The Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) C Terminus Plays a Key Role in Protein Stability, but Its Farnesylation Is Not Required for Membrane Association in Primary Neurons*

نویسندگان

  • Paul Bishop
  • Philip Rubin
  • Andrew R. Thomson
  • Dan Rocca
  • Jeremy M. Henley
چکیده

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is highly expressed in neurons. A possible role for UCH-L1 in neurodegeneration has been highlighted because of its presence in Lewy bodies associated with Parkinson disease and neurofibrillary tangles observed in Alzheimer disease. UCH-L1 exists in two forms in neurons, a soluble cytoplasmic form (UCH-L1(C)) and a membrane-associated form (UCH-L1(M)). Alzheimer brains show reduced levels of soluble UCH-L1(C) correlating with the formation of UCH-L1-immunoreactive tau tangles, whereas UCH-L1(M) has been implicated in α-synuclein dysfunction. Given these reports of divergent roles, we investigated the properties of UCH-L1 membrane association. Surprisingly, our results indicate that UCH-L1 does not partition to the membrane in the cultured cell lines we tested. Furthermore, in primary cultured neurons, a proportion of UCH-L1(M) does partition to the membrane, but, contrary to a previous report, this does not require farnesylation. Deletion of the four C-terminal residues caused the loss of protein solubility, abrogation of substrate binding, increased cell death, and an abnormal intracellular distribution, consistent with protein dysfunction and aggregation. These data indicate that UCH-L1 is differently processed in neurons compared with clonal cell lines and that farnesylation does not account for the membrane association in neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-Terminal Farnesylation of UCH-L1 Plays a Role in Transport of Epstein-Barr Virus Primary Oncoprotein LMP1 to Exosomes

Increasing evidence shows that exosomes are key regulators in cancer cell-to-cell communication. Several reports on Epstein-Barr virus (EBV)-related malignancies demonstrate that latent membrane protein 1 (LMP1) secreted by exosomes derived from EBV- or LMP1-positive cells can promote cancer progression and metastasis. However, the mechanism by which LMP1 is loaded into exosomes is still poorly...

متن کامل

Membrane-associated farnesylated UCH-L1 promotes alpha-synuclein neurotoxicity and is a therapeutic target for Parkinson's disease.

Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is linked to Parkinson's disease (PD) and memory and is selectively expressed in neurons at high levels. Its expression pattern suggests a function distinct from that of its widely expressed homolog UCH-L3. We report here that, in contrast to UCH-L3, UCH-L1 exists in a membrane-associated form (UCH-L1(M)) in addition to the commonly studied soluble for...

متن کامل

Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increa...

متن کامل

Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1-5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly...

متن کامل

Electronic Theses and Dissertations Uc San Diego Title: Structure/function Analysis of Ubiquitin C-terminal Hydrolase-l1 (uch-l1) Structure/function Analysis of Ubiquitin C-terminal Hydrolase – L1 (uch-l1)

Abstract: Parkinson's disease (PD) and Alzheimer's disease (AD), two of the most common neurodegenerative diseases, are caused by both genetic and environmental factors. Mammalian neuronal cells abundantly express a deubiquitinating (DUB) enzyme, Ubiquitin Carboxy-terminal hydrolase L1 (UCH-L1), which is involved in the pathogenesis of both of these neurodegenerative diseases. This DUB is selec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 289  شماره 

صفحات  -

تاریخ انتشار 2014